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Abstract

This paper describes a new design method to optimize thickness distribution of a multilayered structure which is located

on the coupling surface between a structure and an acoustic cavity. The design method is based on the concept of the

density approach in topology optimization incorporating a transfer matrix for a multilayered structure that includes a

poroelastic media layer. The one-dimensional transfer matrix adopted here is an approximate representation addressing

vibro-acoustic effects inherent in a multilayered structure, and balances calculation resources and desired accuracy.

Applying the transfer matrix representation as boundary conditions on the coupling surface between a structure and an

acoustic cavity, the modified equilibrium equation of the vibro-acoustic system is derived which is approximately but

efficiently solved by the modal approach. In this study, the problem of minimizing the acoustic pressure within the cavity

over the prescribed frequency range is formulated under the volume constraint of the poroelastic media layer. The

continuous approximation of thickness distribution is assumed, and the thickness of the poroelastic media layer at each

nodal point is chosen as design variables. Numerical results show that an acoustic response is significantly reduced by the

optimal thickness distribution having a total weight equal to or less than that in the initial uniform thickness. These

demonstrate that the proposed method is effective to design the optimal thickness distribution of a multilayered structure.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper discusses a new design method to optimize the thickness distribution of a multilayered structure
which is located on the coupling surface between a structure and an acoustic cavity to minimize sound pressure
levels inside the cavity. Multilayered structures including poroelastic media for absorption and isolation are
widely used in automotive industries, and these are usually applied on the coupling surface between a structure
and an acoustic cavity to reduce the level of sound pressure within. To meet increasingly stringent fuel
economy targets, configurations and thicknesses of multilayered structures should be designed with minimal
weight, but this tends to diminish their performance in terms of decreasing sound pressure levels.
Consequently, an optimization method for the design of multilayered structures is needed that can
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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simultaneously achieve the desired requirements for weight reduction and decrease in sound pressure levels in
automotive interiors.

The problem of optimizing thickness distribution of a structure has been extensively studied in the past
literature in which elastic plates such as Kirchhoff plates and Mindlin–Reissner plates was mainly treated. In
the beginning of 1980s, Cheng and Olhoff [1] have first demonstrated that the optimal plates may include the
infinite number of the infinitely thin stiffeners and that the thickness distribution problem suffers from lack of
convergence, i.e., it is ill-posed. In order to make the problem well-posed, a regularization of the problem
formulation should be introduced. This regularization can be done by introducing hole-in-cell or laminated
microstructure model with continuous varying volume density of the base material or stiffeners, or by
introducing fictitious material model whose properties, such as elasticity or thickness, are assumed to be a
continuous function of penalized material density (see, e.g., Ref. [2]). Utilizing these models in conjunction
with the topology optimization method, the optimal reinforcement of a given plate was computed by Soto and
Dı́az [3], Dı́az et al. [4], Krog and Olhoff [5], and Belblidia et al. [6], and the optimal perforated plate design
was investigated by Tenek and Hagiwara [7], Lee et al. [8], and Pedersen [9].

When the regularized optimization problem is solved using the FEM, design variables are generally
discretized utilizing finite element meshes prepared to solve equilibrium equations subject to optimization. If
the design variables are assigned in elements, they are usually set to piecewise constant values within each
element. When setting these values, sufficiently fine discretization is required in the numerical implementation,
because a continuous material distribution is assumed through the regularization of the optimization problem,
but applying a mesh of sufficient fineness may exceed the bounds of practical calculation resources.
Furthermore, as pointed out by Sigmund and Petersson [10], numerical instabilities such as checkerboard
patterns and mesh-dependencies may appear using this setting. To mitigate these numerical problems, several
methods have been proposed such as filtering schemes by Sigmund [11], perimeter control by Haber [12], and
local gradient constraint by Niordson [13]. To overcome the problem, Matsui and Terada [14], and
Rahmatalla and Swan [15] proposed that discretized design variables be assigned to elements nodes and
interpolated by a continuous function within each element. This method ensures at least C0 continuity of
design variables over the design domain, even if the adopted finite element mesh is not fine.

The problem of minimizing acoustic response has been also the subject of considerable past research.
Optimal plate design is a typical approach to passively minimizing radiated sound power. Lamancusa [16]
developed a general method for obtaining optimal thickness distributions of plates where radiated sound
power is calculated using a discretized Rayleigh integral formulation in conjunction with a finite element
solution of the structural problem with acoustic loading neglected. Wodtke and Lamancusa [17] presented a
method for optimizing thickness distributions of damping layers for circular plates with respect to minimal
radiated sound power in a given frequency band. More recently, Du and Olhoff [18] proposed a design method
for optimal material layouts of structural panels to minimize the sound power radiated from a structural
surface into ambient air, with sound pressure approximately evaluated by assuming that the surface radiates
plane waves. Yoon et al. [19] presented an optimization method to minimize sound pressure levels within a
prescribed acoustic cavity for a fully coupled structural–acoustic problem, by adopting a mixed displacement/
pressure finite element formulation. However, optimization of multilayered structures including poroelastic
media, which is usually located on boundaries between a structure and an acoustic cavity, has seldom been
studied, though this material combination is widely used in industries to secure desired quietness, due to its
applied simplicity. Lee et al. [20] were the first to address a design method for optimal layer sequencing of a
one-dimensional multilayered structure to maximize sound transmission loss based on a topology
optimization algorithm.

The dynamic responses of a multilayered structure including poroelastic media can be calculated utilizing
Biot–Allard’s theory proposed first by Biot [21] and developed further by Johnson et al. [22], Champoux et al.
[23], and Allard [24]. This describes the coupled behavior of two phases in poroelastic media, the solid and the
fluid phases. The medium in each phase is supposed to be either an elastic solid or a Newtonian fluid, and each
phase can be modeled using equivalent properties which are dependent on frequency. Finite element analysis
of a multilayered structure including poroelastic media by Biot–Allard’s theory can predict frequency
responses with an exact representation of shape and boundary conditions. Over the past several decades, there
has been a great deal of effort devoted to the analysis of poroelastic media using finite element formulations.



ARTICLE IN PRESS
T. Yamamoto et al. / Journal of Sound and Vibration 318 (2008) 109–130 111
Kang and Bolton [25] and Easwaran et al. [26] introduced a displacement-based formulation using variables
for the displacements in the solid and the fluid phases. Atalla et al. [27] developed a mixed formulation using
the displacements of the solid phase and the pressure of the fluid phase as variables. This mixed formulation
requires only four degrees of freedom per node, while the displacement-based formulation requires six. Hence,
it is advantageous from the standpoint of reduced computation time and data storage requirements. However,
significant calculation time is still required to obtain frequency responses of a multilayered system when a
structure and an acoustic cavity are coupled together and the degrees of freedom of the total system are huge,
or when responses at numerous frequencies must be evaluated. The frequency-dependent characteristics of
poroelastic media are the main cause of the onerous calculation demands.

Optimization techniques generally require many iterative calculations to obtain convergence of an objective
function, which makes it all the more necessary to be able to evaluate frequency responses as quickly as
possible. Frequency responses of a multilayered structure can also be obtained by the wave-based approach
(see, e.g., Ref. [28]) if a structure to be solved has simple geometry or directions of the wave propagation are
limited. Allard [29] and Lauriks et al. [30] have derived the transfer matrix for a poroelastic layer by applying
the solutions of the Helmholtz equation for poroelastic media. The transfer matrix of a multilayered structure
can be calculated analytically, which significantly reduces computation time and data storage requirements.

In this paper, we propose a new optimization method to obtain the optimal thickness distribution of a
multilayered structure by applying the concept of the density approach in topology optimization and by
utilizing the transfer matrix representation of a multilayered structure located on the structural–acoustic
coupling surface. The rest of the paper is organized as follows: In Section 2, Biot–Allard’s theory and the
wave-based solution for one-dimensional problems are briefly reviewed. The transfer matrix of a multilayered
structure is then implemented as boundary conditions at the coupling surface between a structure and an
acoustic cavity, and the equilibrium equations of the system are derived. In Section 3, we formulate an
optimization problem to obtain the optimal continuous thickness distribution for a multilayered structure. In
Section 4, the computational accuracy of the frequency responses applying the transfer matrix representation
of a multilayered structure is verified by comparing the results of the frequency responses obtained by the finite
element formulation. Several numerical examples are finally provided to confirm the validity of the proposed
optimization method.
2. Transfer matrix representation of multilayered structures

2.1. Review of Biot– Allard’s theory

In this section we review the displacement-based formulation of Biot–Allard’s theory for poroelastic media
to highlight the validity of the descriptions used in this paper. Refer to Allard [24] for additional details. In the
following, all physical quantities are expressed in the frequency domain.

As illustrated in Fig. 1, poroelastic media have two phases, one solid and the other fluid. Assuming
harmonic vibration of angular frequency o for the displacements of the solid phase us

i and the displacements
of the fluid phase u

f
i , equilibrium equations for each phase are written as

qss
ij

qxj

þ o2ðr11us
i þ r12u

f
i Þ ¼ 0, (1)
Fig. 1. A schematic view of a poroelastic medium.
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qsf

qxi

þ o2ðr12us
i þ r22u

f
i Þ ¼ 0, (2)

where ss
ij and sf are the respective stresses in the solid and the fluid phases. Pressure in the fluid phase pf can

be written as sf ¼ �fpf using the porosity f. r11; r22, and r12 are the expressions of the complex dynamic
densities considering the viscous effect induced by the relative velocities between the solid and the fluid phases:

r11 ¼ ð1� fÞrs þ ða1 � 1Þfrf þ
sf2

jo
G, (3)

r22 ¼ frf þ ða1 � 1Þfrf þ
sf2

jo
G, (4)

r12 ¼ �ða1 � 1Þfrf �
sf2

jo
G, (5)

where j is the imaginary unit, a1 the tortuosity, and s the flow resistivity, and rs and rf , respectively, the
material densities of the solid and the fluid phases. sf2G is a function related to the viscous damping and G is
given by

G ¼ 1þ
4jon
L2

rf 2a21
s2f2

� �1=2

, (6)

where n is the dynamic viscosity of the fluid phase, and L the viscous characteristic length. The constitutive
laws for each phase in Biot–Allard’s theory are written as

ss
ij ¼ fðP� 2NÞes

kk þQef
kkgdij þ 2Nes

ij, (7)

sf ¼ Qes
kk þ Ref

kk, (8)

where es
ij and ef

ij are the respective strains of the solid and the fluid phases, dij Kronecker’s delta and N the
shear modulus of the solid phase. The approximated expressions of P, Q, and R which are valid in most
poroelastic media applied for absorption and insulation are derived as

P ’
ð1� fÞ2

f
Kf þ 3

1� ns

1þ ns
Ks, (9)

Q ’ ð1� fÞKf , (10)

R ’ fKf , (11)

where Ks and ns are the bulk modulus and Poisson’s ratio of the solid phase, respectively. Kf is the complex
dynamic bulk modulus of the fluid phase taking into account the thermal dissipation effect between the solid
and the fluid phases:

Kf ¼
gP0

g� ðg� 1Þð1þ ð8n0=joL
02ÞG0Þ�1

, (12)

where g, P0, and n0 are the specific heat ratio, the atmospheric pressure, and the thermal diffusivity,
respectively. Using the thermal characteristic length L0, G0 is given by

G0 ¼ 1þ
joL

02

16n0

� �1=2

. (13)
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2.2. Wave-based solutions

Now we consider the one-dimensional problem in which displacements are along the x-axis. The
displacement potential cs and cf for the solid and the fluid phases can be defined as

us ¼
qcs

qx
; uf ¼

qcf

qx
. (14)

Substituting Eq. (14) into the equilibrium equations (1) and (2) and applying the constitutive laws (7) and (8),
the Helmholtz equations of poroelastic media for the one-dimensional problem are derived as

�o2ðr11c
s
þ r12c

f
Þ ¼ P

q2cs

qx2
þQ

q2cf

qx2
, (15)

�o2ðr12c
s
þ r22c

f
Þ ¼ Q

q2cs

qx2
þ R

q2cf

qx2
. (16)

Introducing w ¼ ½cs cf
�T, Eqs. (15) and (16) can be rewritten as

q2w
qx2
þMw ¼ 0, (17)

where

M ¼ o2
P Q

Q R

" #�1 r11 r12
r12 r22

" #
. (18)

Let k2
i ði ¼ 1; 2Þ be the eigenvalues for the matrix M. The fundamental solutions for the Helmholtz equations

(17) are given by e�jkix. The velocities vs and vf , the stresses ss and sf for the solid and the fluid phases are then
expressed using the unknown coefficients xi and zi:

vsðxÞ ¼
X2
i¼1

ðxi e
�jkix � zi e

jkixÞ, (19)

vf ðxÞ ¼
X2
i¼1

tiðxi e
�jkix � zi e

jkixÞ, (20)

ssðxÞ ¼
X2
i¼1

�zs
i ðxi e

�jkix þ zi e
jkixÞ, (21)

sf ðxÞ ¼
X2
i¼1

�ftiz
f
i ðxi e

�jkix þ zi e
jkixÞ, (22)

where

ti ¼
Pk2

i � r11o
2

r12o2 �Qk2
i

, (23)

zs
i ¼ ðPþ tiQÞ

ki

o
, (24)

z
f
i ¼ Rþ

Q

ti

� �
ki

fo
. (25)

ti is the ratio of the displacement of the fluid phase to the displacement of the solid phase, and zs
i and z

f
i are,

respectively, the characteristic impedance for the solid and the fluid phases.
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2.3. Reduced transfer matrix of poroelastic media

As shown in Fig. 2, we consider a multilayered structure located on the coupling surface Gt between a
structural domain Oe and an acoustic domain Oa. The multilayered structure applied here consists of a
poroelastic layer and an elastic layer. If the wave normal to the coupling surface propagates dominantly in a
multilayered structure, the solutions of the one-dimensional Helmholtz equations in Section 2.2 can be applied
at each local point. Let x be the local coordinate normal to the coupling surface Gt. When VðxÞ and V0 are
defined as

VðxÞ ¼ ½vsðxÞ vf ðxÞ ssðxÞ sf ðxÞ�T, (26)

V0 ¼ ½x1 z1 x2 z2�
T, (27)

the solutions of the one-dimensional Helmholtz equations from Eqs. (19) to (22) are rewritten as

VðxÞ ¼ CðxÞV0, (28)

where CðxÞ is a 4� 4 matrix. Substituting x ¼ a and x ¼ b into Eq. (28), VðaÞ is related to VðbÞ by

VðaÞ ¼ CðaÞCðbÞ�1VðbÞ. (29)

This means the transfer matrix CAB for the poroelastic layer between a point A (x ¼ a) and a point B (x ¼ b) is
given by

CAB ¼ CðaÞCðbÞ�1. (30)

Note that CAB is also a 4� 4 matrix and is expressed by the four components: the velocities and the stresses for
each phase.

However, the transfer matrices for an elastic and an air layer are expressed by two components, the velocity
and the stress. Thus, the reduced expression of a transfer matrix for a poroelastic layer that is represented by
the two components, the total velocity vp and the total stress sp, is convenient for multiplication with transfer
matrices of an elastic and an air layer. The reduction to the total velocity and the total stress of a poroelastic
layer can be performed by applying the permeability condition at the surface of a poroelastic layer.
Fig. 2. Two-layered structure, located on the coupling surface between the structure and the acoustic cavity, consisting of a poroelastic

layer glued to an elastic layer.
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When the surface of a poroelastic layer is not permeable, the velocity vs of the solid phase is equal to that of
the fluid phase at the surface. Assuming the continuity of velocity and stress at the surface, vp and sp satisfy the
following relations:

vsðxÞ � vf ðxÞ ¼ 0,

vsðxÞ ¼ vpðxÞ,

ssðxÞ þ sf ðxÞ ¼ spðxÞ. (31)

When the surface is permeable, vp and sp satisfy the following relations owing to the continuity of pressure,
volume velocity and stress at the surface:

fssðxÞ � ð1� fÞsf ðxÞ ¼ 0,

ð1� fÞvsðxÞ þ fvf ðxÞ ¼ vpðxÞ,

ssðxÞ þ sf ðxÞ ¼ spðxÞ. (32)

The relations (31) and (32) can be rewritten as

HVðxÞ ¼ VpðxÞ, (33)

where

VpðxÞ ¼ ½0 vpðxÞ spðxÞ�T. (34)

H is defined according to the permeability of a poroelastic layer surface. For an impermeable surface,

H ¼

1 �1 0 0

1 0 0 0

0 0 1 1

2
64

3
75, (35)

and for a permeable surface,

H ¼

0 0 f �ð1� fÞ

1� f f 0 0

0 0 1 1

2
64

3
75. (36)

If H is equal to HA for the surface at x ¼ a, and HB for the surface at x ¼ b, then we can obtain the following
relations:

HAVðaÞ ¼ VpðaÞ, (37)

HBVðbÞ ¼ VpðbÞ. (38)

From Eqs. (29), (37), and (38), vpðaÞ and spðaÞ are related to vpðbÞ and spðbÞ by

vpðaÞ

spðaÞ

" #
¼ TAB

vpðbÞ

spðbÞ

" #
, (39)

where TAB is the reduced transfer matrix of a poroelastic layer whose size is 2� 2. The reduced transfer matrix
TAB can be multiplied with transfer matrices of other media such as elastic media or acoustic media since they
have the same dimension. Moreover, we can implement the reduced transfer matrix for boundary conditions
at the coupling surface between a structure and an acoustic cavity.

2.4. Implementation of reduced transfer matrix in coupled problem

In this section, we implement the reduced transfer matrix as boundary conditions at the coupling surface in
the structural–acoustic coupled problem, supposing that the wave propagation in a multilayered structure
along the direction normal to the coupling surface is dominant. Now we consider only the continuity of the
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velocity and the stress normal to the coupling surface. The continuity of the velocity and the stress at point A
(x ¼ a) and point D (x ¼ d) in Fig. 2 gives the following boundary conditions:

ve
n

se
ijn

e
j

" #
¼ �

�1 0

0 nA
i

" #
vpðaÞ

spðaÞ

" #
, (40)

va
n

sana
i

" #
¼ �

1 0

0 nD
i

" #
vpðdÞ

spðdÞ

" #
, (41)

where ve
n and va

n are the normal velocities, se
ij and sa are the stresses for the structural and the acoustic domain

at the coupling surface as shown in Fig. 2; ne
i and na

i are the unit normal vectors for the structural–acoustic
coupling surface; nA

i and nD
i are, respectively, the unit normal vectors pointing outward at point A and point

D. The total velocity vpðaÞ and the total stress spðaÞ at point A are related to vpðdÞ and spðdÞ at point D by

vpðaÞ

spðaÞ

" #
¼ TAD

vpðdÞ

spðdÞ

" #
, (42)

where TAD is the reduced transfer matrix of the size 2� 2 between point A and point D given by

TAD ¼
t11 t12

t21 t22

" #
. (43)

Applying the reciprocity of a multilayered structure that gives jTADj ¼ 1, the boundary conditions (40) and
(41) can be rewritten as

va
n ¼ �

1

t11
ve

n þ
t12

t11
jofa, (44)

se
ijn

e
j ¼

t21

t11
ve

nne
i þ

1

t11
jofane

i , (45)

where fa is the potential of an acoustic domain defined as sa ¼ jofa. Eqs. (44) and (45) are regarded as the
boundary conditions for the structural–acoustic coupled problem having a multilayered structure. The weak
formulations of the coupled problem becomeZ

Oe

ðse
ijde

e
ij � reo2ue

i due
i ÞdO�

Z
Gea

jofadue
n dG

�

Z
Gt

1

t11
jofadue

n dG�
Z
Gt

t21

t11
joue

ndue
n dG ¼

Z
Gf

f e
i due

i dG, (46)

Z
Oa

�
1

ra

qfa

qxi

qdfa

qxi

þ
o2

rac2
fadfa

� �
dO�

Z
Gea

joue
ndf

a dG

�

Z
Gt

1

t11
joue

ndf
a dGþ

Z
Gt

t12

t11
jofadfa dG ¼ 0, (47)

where ee
ij is the strain of a structural domain, re and ra, respectively, the densities of a structural and an

acoustic domain, c the speed of sound in an acoustic domain, and f e the external load applied to the boundary
Gf of a structural domain.

When the standard finite element procedure is applied, we obtain the equilibrium equation written as

Ke O

O Ka

" #
� o2

Me O

O Ma

" #
� jo

O C

CT O

� �
� jo

C2 C1

CT
1 C3

" #( )
Ue

Ua

" #
¼

Fe

O

� �
, (48)

where Ke and Ka are the stiffness matrices for a structure and an acoustic cavity,Me andMa the mass matrices
for a structure and an acoustic cavity, C the coupling matrix for the coupling surface without a multilayered
structure, Ue the displacement vector of a structure, Ua the velocity potential vector of an acoustic cavity, and
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Fe the external load vector. For the coupling surface with a multilayered structure, the coupling matrix C1, the
structural impedance matrix C2, and the acoustic impedance matrix C3 are derived as

C1 ¼
Xnt

i¼1

Z
Gt

i

1

t11
NT

e neNa dG, (49)

C2 ¼
Xnt

i¼1

Z
Gt

i

t21

t11
NT

e nen
T
e Ne dG, (50)

C3 ¼
Xnt

i¼1

Z
Gt

i

�
t12

t11
NT

aNa dG, (51)

where Ne and Na are, respectively, the shape function matrices for a structure and an acoustic cavity, ne is the
unit normal vector on the structural surface, and nt is the number of elements on the coupling surface with a
multilayered structure Gt.

In Eq. (48), one can find that the matrix consisting of C1, C2, and C3 is appended to the standard
equilibrium equation of the structural–acoustic coupled problem without a multilayered structure. The direct
approach has to be applied to obtain frequency responses since the coefficients tij in C1, C2, and C3 are
dependent on frequencies. If a multilayered structure does not cause the significant change of eigenmodes of a
structure and an acoustic cavity, then responses can be approximately calculated via the modal approach,
utilizing uncoupled structural and acoustic eigenmodes. This enables considerable computational cost savings.
3. Thickness optimization of multilayered structures

3.1. Formulation of optimization problem

To fulfill the requirements of reducing both the weight of a multilayered structure and sound pressure levels
inside an acoustic cavity, we consider the optimization problem of minimizing sound pressure levels under the
volume constraint of a multilayered structure. Let x be the position vector at the coupling surface with a
multilayered structure Gt. In this study, the thickness of a poroelastic layer tðxÞ is regarded as design variables
while the thickness of an elastic layer is held constant. Note that thicknesses for arbitrary number of layers in a
multilayered structure can be regarded as design variables in the same way as what is described below.

Since the papers by Cheng and Olhoff [1], it has been by now well known that, in the thickness optimization
problems of elastic plates, the optimal plate includes the infinite number of the infinitely thin stiffeners with the
extreme discontinuities of the thickness distribution. Considering this fact, we can assume that the optimal
thickness of a poroelastic layer tðxÞ may also include the extreme discontinuities although it has not been
demonstrated yet. In order to make the problem well-posed, some regularization or smoothing technique
should be introduced. Based on the key idea of the density approach in topology optimization, the thickness of
a poroelastic layer tðxÞ is expressed in a relaxed form as

tðxÞ ¼ mpðxÞtmax, (52)

where mðxÞ is a density function with C0 continuity ranging between 0 and 1, p is the penalization parameter,
and tmax denotes the prescribed maximum thickness of the poroelastic layer. Volume m of the poroelastic layer
is written as

m ¼

Z
Gt

mðxÞtmax dG. (53)

In topology optimization problems, the penalization parameter p equal to or larger than 3 is mostly applied in
order to penalize intermediate values of mðxÞ and reduce effectively grey scale areas (see, e.g., Ref. [31]).
However, in thickness optimization problems, intermediate values can be physically realized and equally
acceptable. Therefore, the penalization parameter p is assigned the value 1 in this paper.
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For the objective function F, we here define the mean squared sound pressure level within the prescribed
frequency range f 1pfpf 2 over the partial domain Oc of the acoustic domain Oa. Considering the relation
pa ¼ �jofa, the objective function F is written as

F ¼

Z o2

o1

Z
Oc

o2fafa� dO
� �

do, (54)

where o1 ¼ 2pf 1 and o2 ¼ 2pf 2, and
� denotes complex conjugate. Introducing the spectrum of the objective

function Fo written as Fo ¼
R
Oc o2fafa� dO, and regarding the density function mðxÞ as design variables, the

optimization problem can be defined as

minimize
m

F ¼

Z o2

o1

Fo do

subject to m�m0p0,

equilibrium equations (46), (47),

0omðxÞp1, (55)

where m0 is the upper bound for the volume of the poroelastic layer.

3.2. Continuous approximation

The optimization problem (55) is usually solved numerically utilizing discretized design variables in
conjunction with the FEM to solve equilibrium equations. Considering the relaxed form of thickness in Eq.
(52), thickness should be distributed continuously over the design domain, and this status must hold even after
discretization of the thickness distribution. If the discretized design variables are assigned in elements for the
FEM, they are usually set to piecewise constants within an element. Therefore, a sufficiently fine mesh is
required to be consistent with the continuous thickness distribution in Eq. (52). Unfortunately, using such a
fine mesh places severe demands upon calculation resources.

To overcome the problem, we assume the continuous approximation of material distribution proposed by
Matsui and Terada [14] and Rahmatalla and Swan [15]. This means the design variable mðxÞ is assumed to be
continuous over the design domain. The discretized design variables mi are assigned at nodes of elements, and
we approximate the design variable mðxÞ as

mðxÞ ’ NT
t l ¼

Xnd

i¼1

Ntimi, (56)

whereNt is a vector whose components Nti are interpolation functions, l is a vector of the discretized nodal design
variables mi, and nd is the number of design variables. The bilinear interpolation function is here used as Nti in the
case where quadrilateral elements are applied for its simplicity. Thus, the design variable mðxÞ can hold C0

continuity throughout the design domain due to the partition-of-unity property even after the discretization.
Applying the finite element discretization with the continuous approximation of design variables in Eq. (56),

the optimization problem can be formulated as

minimize
mi

F ¼

Z o2

o1

Fo do

subject to m�m0p0,

D
Ue

Ua

" #
�

Fe

O

" #
¼ O,

0omminpmip1 ði ¼ 1; 2; . . . ; nd Þ, (57)

where

Fo ¼
Xnc

i¼1

Z
Oc

i

o2UT
aN

T
aNaU

�
a dO, (58)
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m ¼
Xnt

i¼1

Z
Gt

i

NT
t ltmax dG, (59)

D ¼
Ke O

O Ka

" #
� o2

Me O

O Ma

" #
� jo

O C

CT O

� �
� jo

C2 C1

CT
1 C3

" #( )
. (60)

D is the dynamic stiffness matrix; nc and nt are, respectively, the number of elements in the domain Oc and the
boundary Gt; mmin is a lower bound of design variables mi.

3.3. Optimization algorithm

The optimization algorithm to solve the problem defined in Eq. (57) is explained through the flowchart
shown in Fig. 3 consisting of five steps in an iteration loop. In the first step, the transfer matrix of the
multilayered structure is calculated using design variables. In the second step, the equilibrium equations of the
system are solved. In the third step, the objective function and the volume of the poroelastic layer are
calculated. If the objective function is converged, the optimal thickness distribution is obtained. Otherwise, the
sensitivities of the objective function and the volume constraint with respect to the design variables are
computed in the fourth step. In the final step, design variables are updated using SLP (Sequential Linear
Programming). These procedures are iterated until the objective function reaches convergence.

3.4. Design sensitivity analysis

Design sensitivities of objective functions and constraints with respect to design variables are required for
updating of design variables using SLP. The sensitivities can be calculated rather quickly by adopting the
adjoint variable method. The adjoint variables Ve and Wa are now introduced for the structural displacement
and the acoustic potential, respectively. Since the equilibrium equation (48) is satisfied, the spectrum of the
objective function Fo is equal to Lo which is defined as

Lo ¼ Fo þ ½V
T
e WT

a �
Fe

O

� �
�D

Ue

Ua

" #( )
þ ½V�e

T W�a
T
�

F�e

O

� �
�D�

U�e

U�a

" #( )
. (61)
Fig. 3. Flowchart of the optimization procedure.
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Supposing that the external load Fe is independent of design variables mi, the derivative of Lo with respect to
design variables mi can be written as

dLo

dmi

¼ � ½VT
e WT

a �
qD
qmi

Ue

Ua

" #
� ½V�e

T W�a
T
�
qD�

qmi

U�e

U�a

" #

þ O
qFo

qUa

� �
� ½VT

e UT
a �D

� � qUe

qmi

qUa

qmi

2
6664

3
7775þ O

qFo

qU�a

" #
� ½V�e

T W�a
T
�D�

( ) qU�e
qmi

qW�a
qmi

2
6664

3
7775. (62)

Therefore we can define the adjoint equation such that

D
Ve

Wa

" #
�

O

qFo

qUa

2
4

3
5 ¼ O. (63)

Substituting the solutions Ve and Wa for the adjoint equation (63) into Eq. (62), we derive the derivative of the
objective function F with respect to design variables mi:

dF

dmi

¼

Z o2

o1

�½VT
e WT

a �
qD
qmi

Ue

Ua

" #
� ½V�Te W�Ta �

qD�

qmi

U�e

U�a

" # !
do. (64)

By the chain rule, the derivative of the dynamic stiffness matrix D with respect to design variables mi is written
as

qD
qmi

¼ �jopmp�1
i tmax

q
qti

C2 C1

CT
1 C3

" #
. (65)

The derivatives of the coupling matrix C1 and the impedance matrix C2, C3 with respect to the thickness ti are
given by

qC1

qti

¼
Xnt

j¼1

Z
Gt

j

�t011
t211

NT
e neNa dG, (66)

qC2

qti

¼
Xnt

j¼1

Z
Gt

j

t021t11 � t21t011
t211

NT
e nen

T
e Ne dG, (67)

qC3

qti

¼
Xnt

j¼1

Z
Gt

j

�
t012t11 � t12t011

t211
NT

aNa dG, (68)

where t011, t012, and t021 denote the derivatives of t11, t12, and t21 with respect to the thickness ti, respectively.
The derivative of volume of the poroelastic layer m with respect to design variables mi is easily derived as

qm

qmi

¼
Xnt

i¼1

Z
Gt

i

NT
t ditmax dG, (69)

where di is the vector having unity in the row corresponding to mi and zeros elsewhere.

4. Numerical examples

As illustrated in Fig. 4, a flat steel panel coupled with a multilayered structure and an acoustic cavity is
applied for numerical confirmation examples. The panel is 0.365m long, 0.250m wide, and 0.0012m thick,
and is supported along all edges. The acoustic cavity has the same length and width as the panel, and has
0.490m height. The bottom surface of the cavity is coupled with the multilayered structure and the other
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surfaces are assumed to have rigid boundaries. An external unit point load is enforced at the center of the
panel. The multilayered structure located between the panel and the cavity consists of a poroelastic layer
0.030m thick and an elastic layer 0.002m thick. The poroelastic layer is glued to the elastic layer, but not glued
to the panel.

The steel panel has Young’s modulus of 2:10� 1011 Pa, the loss factor of zero, the density of 7860 kgm�3,
and Poisson’s ratio of 0.29. In the acoustic cavity, the speed of sound is 340m s�1 and the density
of the air contained in is 1:225 kgm�3. The material properties of the poroelastic layer are listed in Table 1 for
the solid phase and in Table 2 for the fluid phase. The material properties of the elastic layer are also listed in
Table 1.

4.1. Transfer matrix representation

First of all, the transfer matrix representation of a multilayered structure located between a structure and an
acoustic cavity is verified by comparing this with a finite element representation in terms of accuracy and
computational costs. For the finite element representation, the multilayered structure is also modeled by finite
Fig. 4. A schematic view of example model.

Table 1

Structural parameters of the materials used in the multilayered structure

Structural parameters Poroelastic layer Elastic layer

Young’s modulus E Pa 2:67� 105 1:75� 108

Loss factor Z – 0.11 0.25

Density r kgm�3 43 1787

Poisson’s ratio n – 0.4 0.4
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Table 2

Acoustic parameters of the material used in the multilayered structure

Acoustic parameters Poroelastic layer

Porosity f – 0.97

Tortuosity a1 – 2.5

Flow resistivity s Nsm�4 7.0 �104

Viscous characteristic length L m 3.6 �10�5

Thermal characteristic length L0 m 1.69 �10�4
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Fig. 5. Frequency response of displacement of the panel (upper) and pressure in the cavity (lower) when the poroelastic layer is not glued

to the panel: response using the finite element representation (solid line), response using transfer matrix representation (dashed line), and

the reference response when the multilayered structure is removed (solid grey line).
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elements, and the analysis model has 48,877 degrees of freedom. To obtain frequency responses, the direct
solution is applied here.

Fig. 5 shows the frequency responses of the z displacement at the center of the panel and the pressure at the
center of the top surface of the acoustic cavity when the multilayered structure is not glued to the panel. The
solid line gives the response calculated by the finite element representation; the dashed line shows the response
calculated by the transfer matrix representation. The solid grey line shows a reference response when the
multilayered structure is removed.

The peaks observed at 70, 245, and 440Hz are caused by the resonance characteristics of the flat steel panel,
and the peak at 340Hz by the resonance of the acoustic cavity. Though there are some discrepancies between
the response by the finite element representation and that by the transfer matrix representation in the
neighborhood of 150Hz, good agreements are generally obtained through the entire frequency range.

Fig. 6 shows the responses when the multilayered structure is glued to the panel. Here, the response given by
the transfer matrix representation is not consistent with the response by the finite element representation since
the shear wave in the poroelastic medium, which is not taken into account in the transfer matrix
representation, has an impact on the response. In this case, the multilayered structure must be modeled
including the shear wave using, for instance, the finite element representation.

In terms of computational costs, approximately 44,000 s were required to calculate responses at 500
frequency lines applying the finite element representation and the direct solution. In contrast, only
approximately 180 s were required to calculate the eigenmodes, and only 6 s were required to calculate
responses at 500 frequency lines applying the transfer matrix representation and the modal solution. Note that
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Fig. 6. Frequency response of displacement of the panel (upper) and pressure in the cavity (lower) when the poroelastic layer is glued to

the panel: response using the finite element representation (solid line), response using transfer matrix representation (dashed line), and the

reference response when the multilayered structure is removed (solid grey line).
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the computation is carried out on IBM 7039-651 in this example. Thus, the latter method appears capable of
reducing computational demands by a factor that approaches 200, while preserving practical accuracy. This
process is extremely efficient with respect to iterative calculations required in optimization process.
4.2. Frequency ranges to be optimized

Here we regard the whole domain of the acoustic cavity Oa as the evaluation domain Oc subject to be
optimized in order to obtain the optimal thickness distribution independent of the definition of the domain Oc.

Fig. 7 shows the spectrum of the objective function Fo for the initial uniform thickness of the multilayered
structure as drawn in Fig. 8. One can see peaks of the spectrum around 250 and 450Hz when the multilayered
structure is removed. The peaks are rather well damped by the multilayered structure laid on the panel, but the
peak due to the resonance of the panel around 55Hz, and the peak due to the resonance of the acoustic cavity
around 350Hz still show high spectrum levels. In this example, the frequency range from 45 to 70Hz including
the resonance of the panel around 55Hz, and the frequency range from 340 to 365Hz including the resonance
of the cavity around 350Hz, are chosen to be minimized by the optimization method proposed in Section 3.

The discretized thicknesses of the poroelastic layer are regarded as design variables while the thickness of
the elastic layer is held constant. The number of design variables is equal to the number of nodes on the
coupling surface, 999. The upper bound tmax of the thickness of the poroelastic layer is set to 0.090m and the
initial uniform thickness is assumed to be 0.030m which corresponds to the initial design variables ri ¼ 0:333.
The lower bound mmin of design variables is set to 0:01. The volume for the initial uniform thickness of the
poroelastic layer is used as the upper bound m0 for the volume of the poroelastic layer.
4.3. Frequency range 1

The results of the optimization for the frequency range from f 1 ¼ 45Hz to f 2 ¼ 70Hz are described in this
section. Fig. 9 shows the iteration history for the objective function and for the volume that are normalized to
the initial quantities. The value of the objective function decreases significantly to less than 3%, while the
volume remains 100% during the iterations.

The optimal thickness distribution is shown in Fig. 10, and we observe that the thickness near the center is
at the maximum ðmi ¼ 1:0Þ whereas near the edge, it becomes very small ðmi ’ 0:016Þ.
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Fig. 7. Spectrum of objective function for the initial thickness (solid line) and reference spectrum when the multilayered structure is

removed (dashed line). Target frequency ranges including a spectrum peak to be minimized are highlighted. The first covers from 45 to
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Fig. 8. Initial uniform thickness distribution of poroelastic layer.
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Fig. 9. Iteration histories of objective function (circle) and volume (square) for the optimization in the frequency range from 45 to 70Hz.
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Fig. 11 offers the comparison between the response for the initial uniform thickness and that for
the optimal thickness distribution, and shows the frequency response of the displacement at the center
of the panel and the sound pressure level at the center of the top surface of the cavity. In the frequency
range from 45 to 70Hz subject to the optimization, the displacement of the panel is rather damped
by the optimal thickness distribution, and the sound pressure level in the cavity has decreased
significantly. However, the sound pressure level over 200Hz, where the optimization scheme does not apply,
has increased.

Fig. 12 shows the frequency responses for the initial and the optimal thickness distribution obtained using
the finite element method, where the multilayered structure is represented by finite volume elements. The
responses are calculated at the same positions as those in Fig. 11. We can see that the sound pressure level in
the target frequency range from 45 to 70Hz has decreased considerably, although the absolute degree of the
reduction in the sound pressure level does not agree to that in Fig. 11.
Fig. 10. Optimal thickness distribution for the optimization in the frequency range from 45 to 70Hz.
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Fig. 11. Frequency response of displacement of the panel (upper) and pressure in the cavity (lower). Dashed line shows the initial uniform

thickness and solid line shows the optimal thickness distribution for the frequency range of 45–70Hz.
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4.4. Frequency range 2

The results of the optimization for the frequency range from f 1 ¼ 340Hz to f 2 ¼ 365Hz are explained next.
Fig. 13 shows the iteration history for the objective function and the volume of the poroelastic layer. Both the
objective function and the volume decrease in this case.

The optimal thickness distribution is illustrated in Fig. 14. It appears that design variables across most of
the design domain have become smaller (mi ¼ 0:20–0.34) in comparison with the initial design variables,
mi ¼ 0:333.

Fig. 15 shows the frequency response of the displacement at the center of the panel and the sound pressure
level at the center of the cavity’s top surface. The sound pressure level in the frequency range from 340 to
365Hz subject to the optimization has decreased, while the level of panel displacement is almost unaffected.

Fig. 16 shows the frequency responses obtained using the finite element approach, where the multilayered
structure is also discretized by finite volume elements. We can see that the impact of the reduction on the
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Fig. 12. Frequency response of displacement of the panel (upper) and pressure in the cavity (lower) obtained by finite element solution.

Dashed line shows the initial uniform thickness and solid line shows the optimal thickness distribution for the frequency range of
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Fig. 13. Iteration histories of objective function (circle) and volume (square) for the optimization in the frequency range from 340–365Hz.
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Fig. 14. Optimal thickness distribution for the optimization in the frequency range from 340–365Hz.
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Fig. 15. Frequency response of displacement of the panel (upper) and pressure in the cavity (lower). Dashed line shows the initial uniform

thickness and solid line shows the optimal thickness distribution for the frequency range of 340–365Hz.
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sound pressure response from 340 to 365Hz in the case of the optimal thickness is less remarkable, though the
response in the other frequency range is similar to the response shown in Fig. 15.

In Fig. 17, the deflection shapes of the elastic layer by transfer matrix representation are presented: (a)
corresponds to the initial uniform thickness distribution and (b) to the optimal thickness distribution. Note
that the area shown with a darker color has larger amplitudes of vibration. Frequencies are chosen such that
the sound pressure responses in the cavity reach the maximum level within the target frequency range.
Comparing Figs. 17(a) and (b), we can see that the reduction of the net sum of the volume displacement over
the surface of the elastic layer leads to the minimization of sound pressure responses.

Fig. 18 displays the deflection shapes of the elastic layer when the multilayered structure is modeled using
finite elements. We see that the shapes depicting longer wavelengths, which is affected by the vibration of the
panel, are mostly similar to the shapes in Fig. 17, although the deflection modes of shorter wavelengths are
superposed. Volume displacement induced by the short wavelength deflection modes are not dominant in
terms of generated sound pressure, due to the acoustic cancellation over the surface. When complete acoustic
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Fig. 16. Frequency response of displacement of the panel (upper) and pressure in the cavity (lower) obtained by finite element solution.

Dashed line shows the initial uniform thickness and solid line shows the optimal thickness distribution for the frequency range of

340–365Hz.

Fig. 17. Deflection shapes of elastic layer using transfer matrix representation: (a) corresponds to the initial uniform thickness at 352Hz

and (b) to the optimal thickness distribution at 346Hz.
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Fig. 18. Deflection shapes of elastic layer using finite element representation: (a) corresponds to the initial uniform thickness at 352Hz and

(b) to the optimal thickness distribution at 348Hz.
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cancellation is expected, as in the case shown in Fig. 17(b), detailed representations using finite elements rather
than a transfer matrix is required. However, as one can see by comparing Figs. 15 and 16, the transfer matrix
approach gives a good estimation of the performance across most frequency ranges.
5. Conclusions

In this paper, we developed a new design method to optimize the thickness distribution of a multilayered
structure located on the coupling surface between a structure and an acoustic cavity. We conclude the
following:
(1)
 The one-dimensional transfer matrix representation for a multilayered structure located between a
structure and an acoustic cavity was incorporated into a structural–acoustic coupled problem. The
approximated solution reduced computational costs significantly compared to the solution by the finite
element representation, while preserving practical accuracy.
(2)
 A new design method to optimize thickness distribution was proposed by utilizing the concept of the
density approach in topology optimization and the transfer matrix representation for a multilayered
structure. The problem to minimize sound pressure levels in prescribed frequency ranges was formulated
to optimize the thickness distribution of a poroelastic layer in a multilayered structure.
(3)
 The optimal thickness distributions in the example configurations computed by the proposed method
could reduce sound pressure levels, while the volume of the multilayered structure did not increase. This
confirmed that the proposed optimization method is an effective and a practical method that can be used
to design multilayered structures incorporating desired performance attributes.
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